INFS3450 – General Page (All Sections) – Quantitative Analysis for Information Systems Professionals

RMU – Spring Semester 2015 – Resources for…

·         INFS3450A, Instructor: Powell

Please use the RMU Help Desk if you have technical problems (in the lab or with remote access):
call 412-397-2211 or e-mail help@rmu.edu - web www.rmu.edu/help

Tutoring: for INFS3450 tutoring assistance, contact Tracy Gorrell, RMU Tutor Coordinator at 412-262-8600.

Passouts:

o   passout files for INFS3450A and INFS3450B are available online on the RMU system in the following directory: Q:\powell\i3450

F Ethics in Information Technology - Links to ACM (Codes of Ethics) and other sources, discussion topics.

ü Study Hints and Objectives

ü Links and Resources: Applications of Formal Structures and Other Relevant Links (according to course topics; £ = required)

ü Topic Pages [DMAFISP4: References to Powell/Acharya/Holdan/Maxwell/Wood/Wu]

1.      Introduction

1.1.   Links and Resources: Formal Structures and Other Relevant Links (according to course topics; £ = required)

1.2.   Algebraic Notation and Order of Precedence

1.3.   Symbols, Signs, and Operators

2.      Logic

2.1.   Truth Tables

2.2.   DeMorgan’s Laws and Equivalent Statements

2.3.   Evaluating a Logic Expression

2.4.   Equivalence, Contradiction, Tautology

2.5.   Consulting a Prolog file.

2.6.   Prolog Lists.

2.7.   Building a Circuit Model.

2.8.   Arity (Valence) in Operators, Tarski’s World, and Prolog

2.9.   Tarski's World and Logic Resources, please see:

2.9.1.                              https://faculty.washington.edu/smcohen/120/Chapter9.pdf

2.9.2.                              http://people.cis.ksu.edu/~tamtoft/CIS301/Fall04/Slides/03.pdf

2.9.3.                              http://ada.evergreen.edu/dandi/logic/tests/sherriAnswers.pdf

2.9.4.                              http://www.logicinaction.org/docs/ch4.pdf

2.10.                    See also Netmasks/Genmasks and Wildcard Marks (

3.      Sets

3.1.   Set Notation and Specifying the Members of a Set.

3.2.   Subsets and Proper Subsets.

3.3.   Sets and Set Operations.

3.4.   Venn Diagrams.

3.5.   Set Operations Using Prolog

3.6.   Venn Diagrams and Categorical Logic

3.7.   Sequences and Strings

3.8.   Partitions and their Applications

4.      Number Systems and Representation

4.1.   Decimal, Binary, Hex

4.2.   Number Systems: Arabic, Roman, Base 2, Base 10, Base 16, Base 20.

4.3.   Mesoamerican Base 20 and Modified Base 20 Number Systems

4.4.   The Bit Budget Concept, see Bit Budget page

4.5.   Computer Operations Using Binary and Hex

4.5.1.                              Number System Conversions.

4.5.2.                              Logical Operations.

4.5.3.                              Shift Operations.

4.5.4.                              Binary Addition with and without overflow

4.5.5.                              Two’s Complement Operations

4.6.   Scientific Notation and Floating Point.

4.7.   Interpreting Binary Flags in Hexadecimal

4.7.1.                              Interpreting Binary Flags 1 in Hexadecimal: Internet Examples (IP)

4.7.2.                              Interpreting Binary Flags 2 in Hexadecimal: Internet Examples (TCP)

4.7.3.                              Interpreting Binary Flags 3 in Hexadecimal: Internet Examples (BPDU)

4.7.4.                              Interpreting Binary Flags 4 in Hexadecimal: Internet Examples (OSPF)

4.7.5.                              Interpreting Binary Flags 5 in Hexadecimal: Internet Examples (CDP)

4.7.6.                              Interpreting Binary Flags 6 in Hexadecimal: Internet Examples (BGP)

4.8.   Internet Addresses and Masks

4.8.1.                              Anatomy of an IPv4 Address

4.8.2.                              IPv4 Netmasks/Genmasks (expressed in dotted-decimal mode and CIDR notation)

4.8.3.                              IPv4 Wildcard Masks (used in OSPF, EIGRP routing and ACLs)

4.8.4.                              IPv4 Address Ranges

4.8.5.                              IPv4 Address Types

4.8.6.                              IPv4 Address Practice Using CIDR Notation (rather than classes A, B, C)

4.8.7.                              Dotted Decimal in IPv4 (base 2) and in Mayan Long Count dates (modified base 20 in Archaeology)

4.8.8.                              IPv6: Examples of IPv4-mapped IPv6 Addresses

4.8.9.                              IPv6: IPv6 Addresses

4.8.10.                          IPv6: EUI-64

4.8.11.                          Color Vectors (RGB Model)

4.8.12.                          “Binary Clock” (BCD = Binary Coded Decimal Model)

4.8.13.                          Calculator: Using Windows 7® Calculator.

5.      Relations, Functions, Operators

5.1.   Properties of Binary Relations.

5.2.   Equivalence Relations.

5.3.   Relations and Functions

5.4.   Reflexive and Strict Partial Orders.

5.5.   Prefix Notation Practice Using Prolog

5.6.   Modulus (Mod) Function and Non-decimal Arithmetic.

6.      Counting, Randomization, Permutations, Combinations

6.1.   Randomization Examples.

6.2.   Randomization and Permutation Applications.

7.      Relational Database Concepts

7.1.   Relational Database Concepts and Examples

7.2.   Aggregates in Database Functions; Equivalence Relations.

7.3.   Exclusionary Queries; see Harvey/Baugh/Johnston/Ruzich/Grant, “The Challenge of Negation in Searches and Queries.”

8.      Algorithms and Recursion

8.1.   Recursion in Prolog.

8.2.   Lindenmayer Systems 1: Recursion and Applications - Logo

9.      Codes, Encryption, Compression

9.1.   Characters and Codes 1 – ASCII

9.2.   Characters and Codes 2 – ASCII Extended, ASCII Control Characters

9.3.   Characters and Codes 3 – Unicode, ISO 10646 (Universal Character Set)

9.4.   Parity Bits (Odd and Even) using ASCII Characters and Parity Checking

9.5.   Cryptographic Computations

9.6.   Summary of Codes

9.7.   Codes 6: Compression

9.8.   Codes 7: Radix 64.

9.9.   Codes 8: CDMA.

9.10.                    Sorting and Collating Sequences

10.  Graphs, Trees, and Networks

10.1.                    Graphs 1 – Introduction to Graphs and Subgraphs; Communication of Adjacency

10.1.1.                          Graphs 1 – Vertex, Edge, Adjacency, Incident On, Degree, Components, Connected

10.1.2.                          Graphs 1 – Parallel Edges, Loops, Reflexive, Simple Graph

10.1.3.                          Graphs 1 – Loops, Subgraph, Reflexive Graph

10.1.4.                          Graphs 1 – Neighbor, Neighborhood, Distinguished Vertex

10.2.                    Graphs 2Paths and Cycles in Graphs.

10.3.                    Graphs 3 – Planarity in Graphs.

10.4.                    Ordered Graphs

10.4.1.                          Graphs 4.1– Directed Graphs

10.4.2.                          Graphs 4.2 – Ordered Graphs: Summary (Directed Graphs, Hasse Diagrams, Rooted Trees)

10.5.                    Graphs 5 – Graph Representation

10.6.                    Graphs 6 – Graph Reduction and Applications

10.7.                    Graphs 7 – Cyclic and Acyclic Graphs

10.8.                    Graphs 8Graph Coloring (Graph Vertex Coloring)

10.9.                    Trees 1 – Introduction to Trees.

10.10.                Trees 2Spanning Trees and Applications

10.11.                Trees 3 – Spanning Trees in Cisco Switching (CCNA)

10.12.                Trees 4 – Applications of Tree Structures (Decision Trees); see $ORDER applications in associative arrays in InterSystems Caché ObjectScript, FIS Global GT.M and ISO M

10.13.                Networks 1 – Introduction.

10.14.                Networks 2 – Transport Networks

10.15.                Networks 3 – Matching Networks

10.16.                Isomorphism of Graphs and Trees

10.17.                Graph Databases (Videos and Links, including regarding Neo technology's Neo4j)

11.  State Transitions, Automata and Pattern Matching

11.1.                    Comparison and State Tables: Finite-State Machines, Moore FSMs with Output, Mealy FSMs with Output

11.2.                    Building and Testing Moore Finite-State Machines with Output

11.3.                    Building and Testing Finite-State Automata.

11.4.                    Building and Testing Mealy Finite-State Machines with Output

11.5.                    Lindenmayer Systems 2: Grammars, Recursion, Applications of L-Systems

11.6.                    Pattern Matching (UNIX, ISO SQL, Microsoft Access, Caché ObjectScript and ISO M) and Regular Expressions

12.  Documentation of Computer Languages

12.1.                    Languages and Grammars

13.  Specification, Verification, and Validation

13.1.                    Specification, Verification, and Validation

14.  Summary

14.1.                    Specialized Terminology and Concepts for this Course:
Strict Partial Order,
Strongly Connected Digraphs
Source and Target Sets in Relations

14.2.                    Practical Applications of Formal Structures – Examples

Topics pages developed/maintained by
Valerie J. H. Powell, RT(R ), PhD, RMU C&IS Department, Peter Y. Wu, PhD, RMU C&IS Department, and
E. Gregory Holdan, PhD, RMU Mathematics Education Program, Mathematics Department

Quiz Examples for Study

MC Quiz Examples for Study

Current Information, Announcements, and Reminders

þ Please inform yourself regarding information technology issues.

¥ Computer Security resources

& Required textbook:

1.      Valerie J. H. Powell, Sushil Acharya, E. Gregory Holdan, Mark M. Maxwell, Sushma Mishra, David F. Wood, Peter Y. Wu, eds., Discrete Mathematics Applications for Information Systems Professionals 4th ed. (distributed in class)

& Recommended book resources:

1.      Stan Gibilisco, Math Proofs Demystified: A Self-Teaching Guide (McGraw-Hill, 2005).

2.      Myke Predko, Digital Electronics Demystified: A Self-Teaching Guide (McGraw-Hill, 2005).

3.      Neville Dean, The Essence of Discrete Mathematics (Prentice Hall – Pearson Education, 1997).

 

Updated: 2015-04-16

RMU C&IS

é To Top